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The discovery of integrability in planar N = 4 SUSY Yang-Mills [1, 2] and in string

theory on AdS5 × S5 [3] has lead to considerable progress in testing AdS/CFT duality.

In particular, an increasingly precise correspondence between the spin-chain description of

gauge theory anomalous dimensions and the world-sheet theory of the dual string continues

to emerge [4 – 9]. The correspondence is clearest in a limit where a U(1) R-charges J1 and

scaling dimensions ∆ of gauge theory operators become large. Following [9],1 the specific

limit we consider is one where J1, ∆ → ∞ with the difference E = ∆ − J1 and the ’t

Hooft coupling λ held fixed. In this limit the spin chain/string becomes infinitely long

and the spectrum consists of local excitations which propagate freely apart from pairwise

scattering. The physical content of the limiting theory is the spectrum of asymptotic states

and their S-matrix and the main problem is to compare the spectrum and S-matrix which

appear on both sides of the correspondence.

The asymptotic spectrum of the gauge theory spin chain includes an infinite tower of

BPS states labelled by a positive integer Q, which also carry a conserved momentum p.

The state Q = 1 corresponds to the fundamental spin-chain excitation known as a magnon.

States with Q > 1 correspond to boundstates of Q fundamental magnons [13]. Each of

these states lives in a short representation of supersymmetry and has an exact dispersion

relation,

E =

√

Q2 + 8g2 sin2
(p

2

)

(1)

where, following the convention of [4], we introduce a coupling g which is related to the ’t

Hooft coupling λ by g2 = λ/8π2. For Q > 1, this formula is a generalisation of the exact [8]

magnon dispersion relation obtained in [4, 6, 7] (see also [14]).

In the following we will study the scattering of the BPS states described above. The

exact S-matrix for the magnons themselves is known up to a single overall phase [8]. In the

SU(2) sector, the remaining ambiguity corresponds to the dressing factor first introduced

in [5, 15]. As we review below (see Eqn (12)), the dressing factor takes a very specific form

as a function of the conserved charges of the theory but still involves an infinite number of

undetermined coefficients. In an integrable theory, the scattering of boundstates is uniquely

determined by the scattering of their constituents [16 – 18]. In this Letter, we will take the

exact magnon S-matrix, including the dressing factor, as a starting point and derive the

corresponding S-matrix for the scattering of magnon boundstates in the SU(2) sector. The

resulting S-matrix has an interesting analytic structure with simple poles corresponding to

boundstate contributions in the s- and t- channels as well as double-poles corresponding

to anomalous thresholds. The boundstate S-matrix also includes a dressing factor which is

functionally identical to the one appearing in the fundamental magnon S-matrix. We note

that this universality of the dressing factor is essentially equivalent to its conjectured form

as a function of the conserved charges mentioned above.

On the string theory side, the fundamental magnons and their boundstates correspond

to solitons of the worldsheet theory which can be studied using semiclassical methods

for g À 1 [9]. In particular, SU(2) sector boundstates with values of Q which scale

1For related earlier work see [10 – 12].
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linearly with g, are identified with classical string configurations known as “Dyonic Giant

Magnons” [19 – 24]. In string theory, Q corresponds to a conserved angular momentum

on S5 and the exact dispersion relation (1) is already obeyed at the classical level. These

string configurations can also be mapped to soliton solutions of the Complex sine-Gordon

(CsG) equation using a certain reduction of the worldsheet σ-model [19]. In the following

we will use the CsG description to obtain a semiclassical approximation to the S-matrix

for the Dyonic Giant Magnons. Our main result is that this precisely matches the large-g

limit of the magnon boundstate S-matrix described above. A similar comparison in the

Q = 1 case of fundamental magnons was performed in [9]. A new feature of the present

case is that both the dressing factor and the remaining factor which originates from the

all-loop gauge theory Bethe ansatz of [4] contribute at leading order in the g → ∞ limit and

therefore both parts are tested by the comparison. While this work was being completed

we learned of a forthcoming paper [33] with similar results.

A generic asymptotic state in the SU(2) sector has two independent quantum numbers

p and Q. It will be convenient to use an alternative parametrisation in terms of two complex

variables X± with,

exp(ip) =
X+

X− . (2)

The energy and charge are given respectively as,

E =
g

i
√

2

[(

X+ − 1

X+

)

−
(

X− − 1

X−

)]

, (3)

Q =
g

i
√

2

[(

X+ +
1

X+

)

−
(

X− +
1

X−

)]

. (4)

If Q and E are regarded as free complex parameters then X+ and X− are unconstrained

complex variables. The condition of fixed integer charge Q provides a cubic constraint on

X± which defines a complex torus [11]. The case Q = 1 corresponds to the fundamental

magnon and the variables X± coincide with the usual spectral parameters x±. We will

reserve the use of lower-case variables x±, y±, . . . for this special case. For any positive in-

teger Q, physical states with real momentum and positive energy are obtained by imposing

the conditions X− = (X+)∗ and |X±| > 1.

It will be useful to define a rapidity variable associated with each state,2

U(X) ≡ U
(

X+,X−)

=
1

2

[(

X+ +
1

X+

)

+

(

X− +
1

X−

)]

. (5)

Following [25] we also define a basis for the higher conserved charges carried by the BPS

states,

qr(X) ≡ qr

(

X+,X−)

=
i

r − 1

[

1

(X+)r−1
− 1

(X−)r−1

]

, r = 2 , 3 , . . . . (6)

2Here and in the following we will use the shorthand notation f(X) to denote f(X+, X−) defined as a

function of two independent variables.
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The rapidity and higher conserved charges, can also be given explicitly in terms of the

momentum p and charge Q, (see also [21, 26])

U(p,Q) =
1

g
√

2
cot

(p

2

)

√

Q2 + 8g2 sin2
(p

2

)

, (7)

qr(p,Q) =
2 sin

(

r−1
2

p
)

r − 1





√

Q2 + 8g2 sin2
(

p
2

)

− Q

2
√

2g sin
(

p
2

)





r−1

, r = 2 , 3 , . . . . (8)

As a consequence of integrability, the asymptotic states described above undergo fac-

torised scattering. In other words the S-matrix for the scattering of an arbitrary number of

excitations can be written consistently as a product of two-body factors. In the case of fun-

damental magnons in the SU(2) sector, with spectral parameters x± and y± respectively,

the exact two body S-matrix can be written as,

s(x, y) ≡ s
(

x+, x−; y+, y−
)

= ŝ(x, y) × σ(x, y). (9)

The first factor,

ŝ(x, y) =
x+ − y−

x− − y+

1 − 1/x+y−

1 − 1/x−y+
=

U(x) − U(y) +
√

2i
g

U(x) − U(y) −
√

2i
g

(10)

originates in the all-loop asymptotic Bethe ansatz of Beisert, Dippel and Staudacher

(BDS) [4]. In the following we will refer to it as the BDS factor. This factor has a

pole in the physical region of the spectral plane at the point x− = y+ which corresponds

to the formation of the Q = 2 BPS boundstate in the s-channel [13]. The second term,

known as the “dressing factor” [5] corresponds to the most general long-range integrable

deformation of the Heisenberg spin chain [15]. It can be written as,

σ(x, y) = exp (iθ(x, y)) . (11)

where,

θ(x, y) =
√

2g
∞
∑

r=2

∞
∑

n=0

cr,r+1+2n(g)[qr(x)qr+1+2n(y) − qr(y)qr+1+2n(x)] . (12)

Here qr are the higher charges defined in (6) and an infinite tower of unknown coefficients

cr,s depending on the coupling constant g remain to be determined. Agreement with

classical string theory uniquely determines the large-g behaviour of these coefficients as [5],

cr,s(g) = δr+1,s + O
(

1

g

)

. (13)

A microscopic derivation of leading-order dressing factor has recently been given in [34].

The leading corrections in 1/g have also been determined by comparison with the one-loop

corrections in the string σ-model [27].
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An important feature of the general form (12) is that it is bilinear in the conserved

charges qr. As a consequence, the scattering phase θ(x, y) = θ(x+, x−; y+, y−) is seperately

odd under the interchange of x+ and x− and under the interchange of y+ and y−. Because

of unitarity, θ is also odd under the interchange x± ↔ y±. In fact, the general form (12),

together with (6), implies that we can write θ in terms of a function k(x, y) of two variables

satisfying k(x, y) = −k(y, x) as,

θ(x+, x−, y+, y−) =
√

2g
{

k(x+, y+) + k(x−, y−) − k(x+, y−) − k(x−, y+)
}

. (14)

As above θ must scale like g in the strong coupling limit. Thus the function k has an

expansion of the form,

k(x, y) = k0(x, y) +
1

g
k1(x, y) + O

(

1

g2

)

(15)

and the leading term can be deduced from the leading order result (13) to be [12],

k0(x, y) = −
[(

x +
1

x

)

−
(

y +
1

y

)]

log

(

1 − 1

xy

)

, (16)

Let us now consider two magnon boundstates with charges Q1 ≥ Q2 and momenta p1

and p2 respectively. Equivalently we can describe these states with spectral parameters

X+, X−, Y + and Y − with,

exp(ip1) =
X+

X− , exp(ip2) =
Y +

Y − , (17)

where X± satisfies (4) with Q = Q1 and a similar equation holds for Y ± with Q = Q2.

Our goal is to find the S-matrix S(X,Y ) describing the scattering of these two boundstates

states. In an integrable quantum theory, the S-matrix for the scattering of boundstates

is uniquely determined by the S-matrix of their constituents. Thus, in the present case,

we begin by considering the scattering of Q1 + Q2 fundamental magnons with individual

spectral parameters,

x±
j1

, y±j2 with j1 = 1, . . . , Q1 , j2 = 1, . . . , Q2 . (18)

As above the spectral parameters for fundamental magnons satisfy the constraints,
(

x+
j1

+
1

x+
j1

)

−
(

x−
j1

+
1

x−
j1

)

= i

√
2

g
, j1 = 1, . . . , Q1 , (19)

(

y+
j2

+
1

y+
j2

)

−
(

y−j2 +
1

y−j2

)

= i

√
2

g
, j2 = 1, . . . , Q2 . (20)

By factorisability, the S-matrix for the scattering of the constituent magnons is simply

a product of two-body factors. The formation of two boundstates of charges Q1 and Q2

corresponds to the pole in this multi-particle S-matrix appearing at,

x−
j1

= x+
j1+1 , j1 = 1, . . . , Q1 − 1 , (21)

y−j2 = y+
j2+1 , j2 = 1, . . . , Q2 − 1 . (22)
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The resulting boundstate spectral parameters X± and Y ± can then be identified as:

X+ = x+
1 , X− = x−

Q1
, (23)

Y + = y+
1 , Y − = y−Q2

, (24)

where it is easy to check that the appropriate constraint equation for X± (i.e. Eqn (4)

with Q = Q1) is obeyed by virtue of (19) and (21) and similarly for Y ±. Consistency

of scattering in such that an integrable theory provides a simple recipe for extracting the

boundstate S-matrix: it is simply the residue of the multi-particle scattering matrix of the

constituent magnons at the pole specified above. This prescription is most familar in the

context of relativistic field theories in (1+1)-dimensions [16, 17], but has also been applied

successfully in the context of integrable spin chains [18]. In terms of the single magnon

S-matrix s(x+, x−; y+, y−) given in (9), the boundstate S-matrix is,

S (Q1, Q2, p1, p2) = S
(

X+,X−, Y +, Y −)

=

Q1
∏

j1=1

Q2
∏

j2=1

s
(

x+
j1

, x−
j1

; y+
j2

, y−j2

)

. (25)

It will be convenient to write S as the product of two factors,

S (Q1, Q2, p1, p2) = Ŝ × Σ . (26)

Here Ŝ is the contribution coming from the BDS factor ŝ in the single magnon S-matrix,

which is defined in (10). The remaining piece Σ originates from the dressing factor σ in

the single magnon S-matrix, as defined in (12). We will consider these two factors in turn.

The BDS piece of the boundstate S-matrix is straightforwardly obtained by direct

evaluation of the product (25). The corresponding calculation for the XXX Heisenberg spin

chain is reviewed in [18]. The pole conditions (21), (22) lead to numerous cancellations

between the Q1Q2 factors in the product. The remaining factors can be conveniently

presented as,

Ŝ (Q1, Q2, p1, p2) = G (Q1 − Q2)

[

Q2−1
∏

l=1

G (Q1 − Q2 + 2l)

]2

G (Q1 + Q2) , (27)

where

G(Q) =
∆U + iQ

g
√

2

∆U − iQ

g
√

2

with ∆U = U(p1, Q1) − U(p2, Q2) . (28)

The singularities of the final answer (27) have a natural interpretation in terms of on-

shell intermediate states. First, the simple pole of the factor G(Q1+Q2) corresponds to the

formation of a boundstate with Q = Q1+Q2 in the s-channel. This is a direct generalisation

of the Q = 2 pole in the S-matrix of two elementary magnons mentioned above. Similarly,

the other simple pole in Ŝ, which comes from the factor G(Q1 −Q2), precisely corresponds

to the exchange of a boundstate with Q = Q1 −Q2 > 0 in the t-channel. The set of Q2 − 1

double poles in the boundstate S-matrix also have a standard explanation in (1 + 1)-

dimensional scattering theory [28]: they correspond to anomalous thresholds. Specifically,
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the positions of the double poles are consistent with the kinematics of an intermediate state

consisting of two on-shell boundstates with Q = Q1 + l and Q = Q2 − l respectively for

l = 1, 2, . . . , Q2 − 1.

The second contribution to the boundstate scattering matrix, denoted Σ in (26) comes

from the dressing factors of the elementary magnon S-matrices appearing in the prod-

uct (25). Here we find an even more complete cancellation of factors appearing in the

product. In fact the final answer is simply that Σ is identical as function of the higher

conserved charges to the fundamental magnon dressing factor σ. Thus we have,

Σ(X,Y ) = exp [iθ(X,Y )] , (29)

θ(X,Y ) =
√

2g
∞
∑

r=2

∞
∑

n=0

cr,r+1+2n(g)[qr (X) qr+1+2n (Y ) − qr (Y ) qr+1+2n (X)] , (30)

where the coefficient cr,s are the same as those appearing in (12). Thus the factor Σ ap-

pearing in the boundstate S-matrix is equal to a universal function of the higher conserved

charges. Equivalently we have

θ(X,Y ) = θ(X+,X−;Y +, Y −)

=
√

2g
{

k(X+, Y +) + k(X−, Y −) − k(X+, Y −) − k(X−, Y +)
}

, (31)

where k(X,Y ) is the same function appearing in (14). As in the case of the single magnon

S-matrix our knowledge of this function (or, equivalently of the coefficients cr,s) is limited

to the first two orders in the strong coupling expansion. As mentioned above, the general

form (12) for the dressing factor originally arose as the most general integrable long-range

deformation of the Heisenberg spin chain. In the present context it is interesting to note

that it is essentially equivalent to the condition that the dressing factor should be the same

universal function of the conserved charges for all BPS states in the theory. Indeed one

could start by imposing this universality as a requirement and, after also taking account of

unitarity and parity invariance, one would immediately be lead to the general form (12).

So far we have been considering the exact analytic expressions for the boundstate S-

matrix. To compare our results with those of semiclassical string theory we need to take

the strong coupling limit g → ∞. As discussed in [19], the natural limit to take is one

where the charges Q1 and Q2 also scale linearly with g. As a consequence, both terms

under the square root in the dispersion relation (1) scale like g2 and thus the energy E

has the appropriate coupling dependence for a semiclassical string state. Conveniently, the

spectral parameters X± and Y ± for boundstates with Q = Q1 and Q = Q2 respectively

remain fixed in this limit. Our next goal is to calculate the leading asymptotics of the

boundstate S-matrix as a function of the spectral parameters. As above we consider the

two factors Ŝ and Σ appearing in (26) in turn.

To take the strong coupling limit of Ŝ, we begin by exponentiating the product ap-

pearing in (27) to obtain a sum in the exponent. As g → ∞ this sum goes over to an

integral, with the integration limits depending only on the sum and the difference between

– 6 –
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the charges Q1 and Q2. Interestingly, the leading contribution to Ŝ has the same general

form (31) as that of the dressing factor. In particular, the final result can be given as,

Ŝ (X,Y ) ∼ exp
(

iθ̂ (X,Y )
)

, (32)

where

θ̂
(

X+,X−, Y +, Y −)

=
√

2g
[

k̂
(

X+, Y +
)

+ k̂
(

X−, Y −)

− k̂
(

X+, Y −)

− k̂
(

X−, Y +
)

]

.

(33)

Here the function k̂ is given by,

k̂ (X,Y ) =

[(

X +
1

X

)

−
(

Y +
1

Y

)]

log

[

(X − Y )

(

1 − 1

XY

)]

. (34)

The strong-coupling limit of the dressing factor Σ is simply given by replacing the

function k(X,Y ) appearing in (31) by the function k0(X,Y ) given in (16). Collecting

the results for the two factors we find the final result for the strong coupling limit of the

boundstate S-matrix can be given as,

S (X,Y ) ∼ exp (iΘ (X,Y )) , (35)

where

Θ
(

X+,X−, Y +, Y −)

=
√

2g
[

K
(

X+, Y +
)

+K
(

X−, Y −)

−K
(

X+, Y −)

−K
(

X−, Y +
)]

.

(36)

Here the function K(X,Y ) is given by,

K (X,Y ) = k̂ (X,Y ) + k0 (X,Y ) =

[(

X +
1

X

)

−
(

Y +
1

Y

)]

log (X − Y ) . (37)

In our previous paper [19] we showed that the magnon boundstates described above

appear in string theory on AdS5 × S5 as classical solitons of the worldsheet action. For

states in the SU(2) sector we may restrict our attention to strings moving on an R × S3

subspace of AdS5 ×S5. The corresponding equations of motion together with the Virasoro

constraint can be mapped onto the complex sine-Gordon (CsG) equation. Under this

equivalence, the classical string solution corresponding to a magnon boundstate of charge

Q and momentum p is mapped to a certain one-soliton solution of the CsG equation. The

soliton in question has two parameters: a rapidity3 θ and an additional rotation parameter

α. The dictionary between these parameters and the conserved quantities E, Q and p is,

E = 2
√

2g
cos (α) cosh (θ)

cos2 (α) + sinh2 (θ)
, (38)

Q = 2
√

2g
cos (α) sin (α)

cos2 (α) + sinh2 (θ)
, (39)

and

cot
(p

2

)

=
sinh (θ)

cos (α)
. (40)

3Not to be confused with the magnon rapidity U(X) introduced above.
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The CsG equation is completely integrable and has multi-soliton scattering solution

which can be constructed explicitly via inverse scattering [29] or by the Hirota method [30].

The only effect of scattering is to induce a time delay for each soliton relative to free motion.

For two solitons with rapidities θ1 and θ2 and rotation parameters α1 and α2 the COM

frame is defined by the condition, cos (α1) sinh (θ1) = − cos (α2) sinh (θ2). In this Lorentz

frame the two solitons experience an equal time delay ∆T1 = ∆T2 = ∆TCOM with [31],

∆TCOM =
1

cos (α1) sinh (θ1)
log F (∆θ,∆α, ᾱ) , (41)

where we define ∆θ = (θ1−θ2)/2, ∆α = (α1−α2)/2 and ᾱ = (α1 +α2)/2 and the function

F is given by,

F (∆θ,∆α, ᾱ) =
sinh (∆θ + i∆α) sinh (∆θ − i∆α)

cosh (∆θ + iᾱ) cosh (∆θ − iᾱ)
. (42)

Time delays due to multiple soliton scattering are simply given by the sum of the delays

experienced in each two-body collision. This is a consequence of integrability, and is a

classical analog of the factorisability of the S-matrix. Indeed, the time delays determine

the semiclassical approximation to the worldsheet S-matrix Sstring = exp(iΘstring). In

particular, if we express the S-matrix as a function of the energies E1 and E2 of the two

excitations and their charges Q1 and Q2 we have [32],

∆T1 =
∂Θstring

∂E1
, ∆T2 =

∂Θstring

∂E2
. (43)

Our aim here is to compare Sstring with the semiclassical limit of the magnon bound-

state S-matrix computed above. Equivalently we can use the boundstate S-matrix to

compute the time delay in boundstate scattering directly and compare with the COM

frame expression for ∆T1 and ∆T2 presented in (41) above. To do so, one has to first

express Θ (X+,X−, Y +, Y −) in terms of the charges Q1, Q2 and the energies E1, E2 using

the relations:

E1 =
g

i
√

2

[(

X+ − 1

X+

)

−
(

X− − 1

X−

)]

, (44)

E2 =
g

i
√

2

[(

Y + − 1

Y +

)

−
(

Y − − 1

Y −

)]

, (45)

Q1 =
g

i
√

2

[(

X+ +
1

X+

)

−
(

X− +
1

X−

)]

, (46)

Q2 =
g

i
√

2

[(

Y + +
1

Y +

)

−
(

Y − +
1

Y −

)]

. (47)

We then define,

∆τ1 =
∂Θ

∂E1
, ∆τ2 =

∂Θ

∂E2
, (48)
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while keeping the charges Q1 and Q2 fixed. Here we present the results of explicit differ-

entiations exclusively in terms of spectral parameters:

∆τ1 = i

(

(X+)
2 − 1

) (

(X−)
2 − 1

)

((X+)2 − (X−)2)
log

(

X+ − Y +

X+ − Y −
X− − Y −

X− − Y +

)

−
(

1

Y +
− 1

Y −

)

(X+X− + 1)

(X+ + X−)
, (49)

∆τ2 = −i

(

(Y +)
2 − 1

) (

(Y −)
2 − 1

)

((Y +)2 − (Y −)2)
log

(

X+ − Y +

X+ − Y −
X− − Y −

X− − Y +

)

+

(

1

X+
− 1

X−

)

(Y +Y − + 1)

(Y + + Y −)
. (50)

All that remains is to compare with the CsG time delays. Combining the identities (44)-

(47) and the relations (38) and (39), one can express the spectral parameters of the magnon

boundstates in terms of4 θi and αi,

X± = coth

(

θ1

2
± i

(α1

2
− π

4

)

)

, (51)

Y ± = coth

(

θ2

2
± i

(α2

2
− π

4

)

)

. (52)

These expressions in turn yield

F (∆θ,∆α, ᾱ) ≡ F
(

X+,X−, Y +, Y −)

=
(X+ − Y +) (X− − Y −)

(X+ − Y −) (X− − Y +)
. (53)

Now comparing (41) with (49) and (50), taking into account the COM frame condition, we

can see that the time-delays for boundstate scattering agree with those of CsG solitons up

to a specific non-logarithmic term,

∆τ1 = ∆T1 +

(

1

Y +
− 1

Y −

)

(X+X− + 1)

(X+ + X−)
. (54)

Upon integration with respect to E1, we can obtain the relation between the scattering

phases:

Θstring = Θ
(

X+,X−, Y +, Y −)

+ (E2 − Q2) p1 . (55)

The non-logarithmic term in (49) integrates up to give the difference term above that is a

direct generalisation of the one in eq. (3.33) of [9]. As in that case, the difference can be

accounted for by taking into account the different effective length of the excitation on the

both sides of the correspondence and is irrelevant for the Bethe ansatz equations. One can

also check that the expressions in (49) and (50) correctly satisfy ∆τ1 = ∆τ2 in the COM

frame.
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